Gravitacné vlny
Gravitacné vlny
Astronómovia zacali prvé vedomosti o vesmíre získavat prostredníctvom úzkeho výseku
elektromagnetického žiarenia, ktorý nazývame viditelné svetlo. Až v priebehu XX.
storocia sme odhalili závoj zakrývajúci dalšie pozorovacie okná v spektre
elektromagnetických žiarení. Vdaka rozvoju casticovej fyziky sme zacali rozvíjat
sledovanie vesmíru pomocou detektorov castíc, napríklad vdaka neutrínovým
detektorom sa s predstihom niekolkých hodín dozvieme o výbuchu jasných supernov i o
dejoch v jadre Slnka. Kozmonautika umožnila priamy prieskum blízkych telies slnecnej
sústavy. Doposial neprebádaným oknom, ktorým môžeme poznávat vesmír je detekcia
gravitacných vln predpovedaných Einsteinovou teóriou relativity. Toto pozorovacie okno
nám umožní nazriet do podstaty prvotných fáz vzniku vesmíru, sledovat zrážky
neutrónových hviezd a ciernych dier, ci objasnit záhadné gama záblesky.
Súcasná fyzika popisuje svet pomocou štyroch základných síl: elektromagnetická, silná
a slabá jadrová sila a gravitácia. Gravitácia je spomedzi nich najmenej preskúmanou
silou, pretože je v porovnaní s dalšími tromi najslabšia. Napriek tomu práve gravitácia
formuje velkoškálovú štruktúru vesmíru, drží pokope slnecnú sústavu i celé galaxie,
pretože ako jediná zo základných síl má prakticky neobmedzený dosah, nepôsobí iba
na krátku vzdialenost ako napríklad silná jadrová sila, ktorá drží spolu castice v jadre
atómu. A navyše ako jediná zo síl pôsobí na všetky hmotné castice.
Albert Einstein ukázal vo svojej všeobecnej teórií relativity, že pojem gravitacnej
prítažlivosti ako ho zaviedol Isaac Newton je možné nahradit zakrivením casopriestoru.
Každé hmotné teleso zakrivuje priestor a cas vo svojom okolí. Túto myšlienku je lahké
si znázornit, ak vypustíme z nášho modelu jeden rozmer a prejdeme k
dvojrozmernému priestoru. V tomto modeli nedrží planéty na ich dráhach okolo Slnka
prítažlivost, ale pohybujú sa zotrvacnostou po najpriamejšej dráhe (geodetike) v
zakrivenom priestore. Dvojrozmerný priestor nášho modelu si znázornime ako gumenú
blanu, na ktorú umiestnime kovovú gulu (Slnko). Ak sa do blízkosti gule prikotúla malá
gulôcka, podstatne zmení svoju dráhu kvôli zakriveniu blany. Ak sa gulôcka dostatocne
priblíži, môže spadnút do priehlbiny, ktorú velká gula vytvorila.
Na opustenie gravitacného pola treba vynaložit tým viac energie, cím je prítažlivost
intenzívnejšia.
Tento efekt je platný aj pre fotóny, castice svetelného vlnenia, takže fotóny opúštajúce
oblast silného gravitacného pola stratia cast energie a ich vlnová dlžka sa úmerne
zväcší. Predlžovanie vlnovej dlžky fotónov týmto efektom nazývame gravitacný cervený
posuv.
V prvom priblížení si môžeme predstavit, že gravitacné vlny sa šíria podobne ako
zvukové alebo elektromagnetické vlny. Neexistuje tu však žiadne prostredie, ktorým by
sa šírili. Vlní sa samotný casopriestor. Dalším rozdielom je spôsob kmitania.
Elektromagnetické vlny, ktorých pole má spin rovný jednej, kmitajú v dvoch rovinách
sklonených o 90°. Gravitacné vlny kmitajú tiež v dvoch nezávislých rovinách, no tieto
sú sklonené iba o 45°, pretože spin ich pola je dva. Najjednoduchším zdrojom
elektromagnetického vlnenia je osovo súmerné teleso (dipól). Symetrické teleso
nemôže byt zdrojom elektromagnetických vln. Gravitacné vlny potrebujú na svoj vznik
až kvadrupól, teda zdroj ktorý nieje súmerný ani podla bodu, ani podla osi.
Príkladným zdrojom gravitacného vlnenia vo vesmíre sú velmi hmotné a blízke
dvojhviezdy, najlepšie neutrónové hviezdy. Všetky formy postupného vlnenia prenášajú
energiu, preto aj neutrónová dvojhviezda vyžarovaním gravitacného vlnenia stráca
energiu a obidve zložky sa navzájom postupne približujú. Po case sa natolko priblížia,
až sa zrazia a splynú, co je sprevádzané uvolnením ohromnej energie. Práve takýmto
scenárom sa dá vysvetlit podstata gama zábleskov, ktoré pozorujeme už niekolko
desatrocí a doposial o nich takmer nic nevieme. Ak použijeme vyššie uvedenú analógiu
zakrivenia priestoru pomocou gumenej blany, môžeme si prenos energie gravitacnými
vlnami priblížit. Stací si predstavit, že tažká gulôcka sa bude prudko húpat a vytvárat
tak na blane vlny. Ak sa zrazia dve hmotné gue, opät vyvolajú vo svojom okolí vlnenie
blany.
Ako nám ukázala kvantová mechanika, elektromagnetické vlny sa môžu šírit iba v
podobe "balíckov", ciže kvánt, preto hovoríme o dualite vln a castíc. Svetlo môžeme
popisovat ako elektromagnetické vlnenie s urcitou vlnovou dlžkou, alebo ako fotóny s
charakteristickou energiou. Rovnako môžeme hovorit o gravitacnom vlnení ako o šírení
castíc nazvaných gravitóny. Na fotóny s urcitým rozsahom energií sú citlivé naše oci, co
vnímame ako svetlo. Gravitóny sa doposial nepodarilo priamo pozorovat, ale už od ich
teoretického odvodenia Einsteinom v roku 1916 sa o to pokúšame a coskoro na to
budeme mat aj príslušné zariadenia.
Jedným z prvých serióznych pokusov o zachytenie gravitacných vln boli pokusy
Josepha Webera.
V roku 1966 uviedol do prevádzky dvojicu detektorov (vzdialených 1 000 km, aby
vylúcil náhodné chyby), ktoré pozostávali z hmotných hliníkových valcov (priemer 66
cm, dlžka 153 cm, hmotnost 1,4 t) dômyselne izolovaných od vonkajších rušení, na
ktoré pripevnil piezoelektrické detektory citlivé na oscilácie spôsobené prípadným
gravitacným vlnením. V priebehu niekolkých rokov trvania experimentu zachytil jediný
signál, ktorý sa už nezopakoval. Dnes predpokladáme, že jeho aparatúra bola príliš
málo citlivá, aby zachytila subtílne gravitacné vlnenie.
Kým sa podarí postavit dostatocne citlivú aparatúru na Zemi, môžeme sa obrátit na
vesmírne laboratóriá, ktoré nám pripravila príroda. Optimálnym miestom na preverenie
efektov predpovedaných teóriou relativity sú podvojné pulzary, ako napríklad PSR
1913+16, ktorý sme objavili pomocou rádioteleskopu v Portorickom Arecibe. Jeho
perióda pulzácií je 0,059 s, a jeho zložky s hmotnostami 1,44 MO (hmotnost Slnka) a
1,39 MO sú od seba vzdialené iba 700 000 km (približne polomer Slnka), takže sa v
sústave výrazne prejavujú relativistické efekty. Napríklad stácanie periastra sústavy je
4° za rok, pritom stácanie perihélia Merkúru je iba 43" za storocie. R. A. Hulse a J. H.
Taylor dostali v roku 1993 Nobelovu cenu za fyziku za výskum tejto sústavy. Okrem
iného zistili, že perióda obehu zložiek 7h 45m sa skracuje o 76 mikrosekúnd za rok, co
vysvetlujeme stratou energie v dôsledku vyžarovania gravitacných vln.
Dnešné pokusy zamerané na detekciu gravitacných vln sú principiálne postavené na
využití laserovej interferometrie. Laserový lúc sa rozdelí na dva zväzky, ktoré sú
vyslané v navzájom kolmom smere k odrážacom upevneným na hmotné testovacie
telesá, podobne ako vo Weberovom experimente. Odrazené svetlo sa opät kombinuje v
interferometri a hladajú sa zmeny v interferencnom vzore, ktoré by sa dali pripísat
casopriestorovým deformáciám v dôsledku priechodu gravitacného vlnenia. Cím dlhšie
sú kolmé ramená, tým väcšiu presnost môžeme dosiahnut.
Napríklad ambiciózny projekt LIGO (Laser Interferometry Gravitational-Wave
Observatory), ktorý má zacat operacnú prevádzku v roku 2002 má dve ramená dlhé 4
km s priemerom 60 cm, v ktorých je udržované hlboké vákuum. Opät sa kvôli overeniu
meraní stavia dvojica týchto detektorov, navzájom vzdialených 3 200 km (štáty
Louisiana a Washington). Mali by dosiahnut miliónkrát väcšiu presnost ako Weberova
aparatúra. LIGO by malo byt schopné zachytit gravitacné vlnenie rôznej povahy a
rozmanitého pôvodu, napríklad periodické signály s narastajúcou frekvenciou
(neutrónové dvojhviezdy), alebo spršky gravitónov (výbuch supernovy).
V prevádzke, vo výstavbe, alebo v podobe návrhu sú aj dalšie detektory gravitacných
vln.
Velmi zaujímavým je napríklad pripravovaný vesmírny projekt LISA (Laser
Interferometry Space Antenna), ktorý by mal byt umiestnený na samostatnej obežnej
dráhe okolo Slnka. Tri družice zostavene do pravouhlého trojuholníka by pracovali ako
velký interferometer s ramenami dlhými až 5 000 000 km. Prípadné zvlnenie priestoru
gravitacnými vlnami spôsobí nepatrné, ale meratelné vychýlenie polôh družíc, co
okamžite zaznamenáme na interferencných obrazcoch laserových lúcov, ktorými budú
neustále premeriavané ich polohy. Zaznamenat dokážeme každú odchýlku v polohe
väcšiu ako priemer atómu.