Tahak - goniometricke funkcie a vzorce

1, sin (x + y) = sinx . cosy + cosx . siny

2, sin (x – y) = sinx . cosy – cosx . siny

3, cos (x + y) = cosx . cosy – sinx . siny

4, cos (x – y) = cosx . cosy + sinx . siny

–––––––––––––––––––––––––––––––––––––

sinx sin (x + k2?)

tgx = –––– = ––––––––––– = tg (x + k2?)

cosx cos (x + k2?)


cosx cos (x + k2?)

cotg = ––––– = ––––––––––– = cotg (x + k2?)

sinx sin (x + k2?)

–––––––––––––––––––––––––––––––––––––

sin ( – x) = – sinx

cos ( – x) = cosx

tg ( – x) = – tgx

cotg ( – x) = – cotgx

–––––––––––––––––––––––––––––––––––––

tgx . cotgx = 1

cos2x + sin2x = 1

–––––––––––––––––––––––––––––––––––––

sínusová veta

a b c

–––– = –––– = ––––

sin ? sin ? sin ?


kosínusová veta

a2 = b2 + c2 – 2bc . cos ?

b2 = a 2 + c2 – 2ac . cos ?

––––––––––––––––––––––––––––––––––––––

sin2x = 2sinx . cosx

cos2x = cos2x – sin2x