podobné referáty

Plazma – čtvrté skupenství hmoty
Jsou známá 4 skupenství - pevné, kapalné, plynné a ... viac...

Světlo, zrcadlo, lom světla, hranol, čočky
Historie: Již od starověku lidé znali zákonitosti ... viac...

Mikroskop
Vznik mikroskopu První mikroskop jehož základem ... viac...

Jak vznikl mikroskop?
První mikroskop sestrojili kolem roku 1590 bratři ... viac...

LASERY - Kvantové generátory světla
Kdyby se vás někdo zeptal, jaké znáte nejjasnější, ... viac...

ico refreklama

Mikroskop


Hodnotenie:
Zobrazení: 6328


Optický prístroj , ktorý slúži na pozorovanie malých predmetov a presné meranie. Za vynálezcu mikroskopu sa pokladá holandský optik, výrobca okuliarov Zacharias Janssen. Častejšie sa však spomína holandská prírodovedec Antony van Leewenhoek (1632 - 1732), ktorý sa zaslátil o rozšírenie mikroskopu tým, že prvý ním objavil pre človeka mikrosvet. Leewenhoekove mikroskopy z r. 1677 - zostrojil ich 400 - zväčšovali asi 250x. Najjednoduchším mikroskopom je každá spojná šošovka zväčšovacie sklo. Používajú sa dve šošovky, pričom jedna - tzv. objektív - pred ktorý sa dáva pozorovaný predmet , vytvára zväčšení a skutočný obraz predmetu. Druhou šošovkou - okulárom - sa tento obraz pozoruje ako lupou znova zväčšený. Objektív a okulár netvoria v súčasných prístrojoch jednoduché šošovky, ale každá časť sama o sebe predstavuje zložitú sústavu šošoviek ( napr. apochromatický imerzný objektív má až 10 šošoviek). Okulár je vložený v hornej časti a objektív je naskrutkovaný v dolnej časti kovovej trubice - tubusu. Obidva tieto optické systémy sa veľmi často vymieňajú v závislosti od toho, aké zväčšenie sa požaduje. Pri dokonalejších mikroskopoch je niekoľko objektívov nasadených na revolveri. Otáčanie revolvera umožňuje ich ľahkú výmenu. Tubus je spojený so statívom tak, že ho možno posúvať, a tým meniť vzdialenosť objektívu od predmetu. Posúvacie zariadenie sa upravuje pre hrubý a jemný posuv.

Typy mikroskopov:

1. Mikroskop dvojitý čiže binokulárny - má vlastne dva mikroskopy spojené do dvojice, ktorá umožňuje pozorovať predmet oboma očami, takže ho vidíme priestorovo.

2. Mikroskop metalografický - slúži na zistenie štruktúry kovov pri výskume kovov a ich zliatin. Vzorky kovov sa obyčajne vopred vyleštia a potom sa pôsobí na ich povrch vhodnými chemikáliami, aby dobre vynikla mikroštruktúra. Vzorka sa pozoruje v odrazenom svetle.

3. Ultramikroskop - pozorujú sa ním preparáty v tmavom poli. Predmet sa osvetľuje priamymi lúčmi, ktoré dopadajú kolmo na optickú os mikroskopu . V rovnorodom prostredí ostáva pole mikroskopu tmavé. Pri týchto pozorovaniach nevidno tvar predmetov a nemožno určiť ani ich veľkosť, dá sa zistiť iba ich existencia ako malých svietiacich bodov v temnom pozadí. Ďalej možno zistiť ich počet, prípadne ich pohyb (Brownov).

4. Mikroskop fluorescenčný - je založený na poznatku, že niektoré látky po dopade svetla určitej vlnovej dĺžky žiaria svetlom inej vlnovej dĺžky. Fluorescencia sa vyvoláva zdrojom ultrafialového žiarenia (ortuťová výbojka, oblúkovka), ktorým sa predmet osvetľuje. Týmto mikroskopom sa dajú skúmať aj nefluoreskujúce látky, ak sú zafarbené fluoreskujúcou látkou.

5. Mikroskop zrkadlový - nemá farebnú chybu, pretože objektív je vytvorený zrkadlovou optikou. Veľkou výhodou je až 10x väčšia vzdialenosť medzi pozorovaným predmetom a objektívom, čo umožňuje lepšiu manipuláciu s predmetom pri pozorovaní.

6. Mikroskop elektrónový - využíva namiesto svetla prúd elektrónov, ekvivalentný žiareniu s veľmi malou vlnovou dĺžkou. Zväčšený obraz vzniká dopadom elektrónov na fluorescenčné tienidlo alebo na fotografickú platňu. Obraz vzniká prechodom elektrónov skúmaným predmetom alebo jeho povrchu (odrazová mikroskopia), resp. sa vytvorí elektrónmi emitovanými z povrchu skúmaného predmetu (emisná mikroskopia). Pri konštrukcii elektrónového mikroskopu sa využil poznatok, že prúd elektrónov prechádzajúci elektromagnetickou alebo elektrostatickou šošovkou podlieha tým istým zákonom ako svetelný lúč prechádzajúci optickou šošovkou. V elektrónovom mikroskope sú optické šošvky nahradené elektromagnetickými alebo elektrostatickými šošovkami. Elektróny sú urýchľované vysokým napätím. V priestore , ktorým sa pohybujú, musí sa udržiavať vysoké vákuum. Okrem optickej sústavy elektrostatických alebo elektromagnetických šošoviek je elektrónkový mikroskop vybavený vákuovou čerpacou sústavou, zdrojom stabilného prúdu pre magnetickú šošovku, resp. zdrojom vysokého napätia pre elektrostatické šošovky. Elektrónový mikroskop sa používa najviac v biológii, fyzike, chémii, metalurgii, v paleontológii a v mnohých ďalších vedných odboroch. Práca sním je však veľmi zložitá, no kým optické mikroskopy zväčšujúce najviac 2000x , elektrónový mikroskop dosiahne až 250000- násobné zväčšenie. Prvý elektrónkový mikroskop zostrojili r.1933 nemeckí fyzici E. Rusk a M.Knoll.

7. Rastrový elektrónový mikroskop (SEM- Scanning Elecron Microscope) - zväčšuje povrchové detaily v postupných obrazoch. Tieto obrazy sa snímajú rastrovacím lúčom elektrónov. Teoretické základy rastrového elektrónového mikroskopu navrhol M. Knoll (1935) - dva roky po zostrojení elektrónového mikroskopu. Prvé pokusné rastrové mikroskop vyrobené v Nemecku a v USA boli veľmi zložité dávali iba nedokonalé zväčšeniny. Moderný vývoj tohto mikroskopu sa začal po druhej svetovej vojne. McMullan a Smith skonštruovali r. 1955 model rastrového mikroskopu na praktické použitie. Výhody rastrového mikroskopu oproti optickému sú predovšetkým vo väčšom rozsahu použiteľného zväčšenia, lepšej rozlišovacej schopnosti a väčšej hĺbke ostrosti. V porovnaní s elektrónovým mikroskopom prednosť rastrového mikroskopu je v trojrozmernom efekte, ktorá je výsledkom extrémnej hĺbky ostrosti rastrového systému ako aj v neporušení sledovanej vzorky. V rastrovom mikroskope elektrónová optika urýchľuje a koncentruje úzky zväzok elektrónového lúča, ktorá vychádza z elektrónovej dýzy. Vychyľovací systém pohybuje lúčom v smere riadkov bod za bodom po povrchu vzorky podobne ako pri snímaní televízneho obrazu. V tom istom slede prebieha riadkovanie i na obrazovka oscilogfrau, na ktorej sa pozoruje zväčšenina vzorky. Intenzita dopadu rastrovacieho lúča je taká veľká, že zo vzorky vyletúvajú ďalšie, tzv. sekundárne elektróny, ktoré sa v detekčnom systéme transformujú na elektrický signál. Po zosilnení sa týmto signálom moduluje jas svetelnej stopy na obrazovke oscilografu. Vzniknutý obraz vyniká ostrou kresbou a plastickosťou. Vďaka týmto mikroskopom sa dajú získať obrazy, umožňujúce vidieť aj polovodičové prechody kryštálov. Biológovia môžu sledovať bunkové útvary, pôsobenie vírusov a baktérii. Geológovia získavajú verné fotografie mikofosílií, ktoré im umožňujú nájsť nové ložiská.



ako to funguje?